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The structures and stabilities of ArnNa+ clusters (n e 54) are investigated using atomistic potentials fitted to
reproduce ab initio calculations performed at the coupled-cluster level on the smaller clusters. Polarization
effects are described using either the interaction between dipoles induced by the sodium ion, or a small
charge transfer in the framework of a fluctuating charges model. In both models, extra three-body contributions
of the Axilrod-Teller type are also included between the sodium ion and all pairs of argon atoms. The two
models predict essentially similar growth patterns, and a transition in the metal ion coordination from 8
(square antiprism) to 12 (icosahedron) is seen to occur nearn ) 50, in response to the intrasolvent constraints.

I. Introduction

Molecular clusters have attracted significant interest because
of their importance in bridging the gap between elementary
intermolecular complexes and solvation at the atomic level.1-4

Neutral clusters are essentially bound by dispersion forces or
by weak electrostatic forces if the molecules carry permanent
multipoles. They can also be bound by multipole-induced forces
such as the hydrogen bond. From a theoretical point of view,
molecular clusters have been investigated in terms of their
structure, stability, dynamics, and thermodynamics. While ab
initio calculations involving perturbative methods (MP2 or MP4)
or coupled-cluster approaches are tractable for small clusters,
force fields and explicit potentials are still needed for larger
species containing more than typically 10 atoms. The celebrated
Lennard-Jones (LJ) potential, in particular, has been abundantly
employed to study the dynamical or statistical properties of van
der Waals clusters.

The situation significantly differs for cationic clusters.5-12

Indeed, when one constituent is ionized, the leading binding
terms become the charged-induced polarization of the other
constituents immediately surrounding the ion. The polarization
interaction is generally 1 order of magnitude larger than the
dispersion forces.13 For instance, it leads to some important
localization in the first shells of helium-doped alkali ions, which
are otherwise fluid in the neutral species.14 Beyond this picture,
some charge delocalization can take place and further complicate
the situation. In charged homogeneous clusters, delocalization
occurs as a resonance process. Conversely, in heterogeneous
clusters where the ionization potential of one component is
significantly smaller than those of the other components, charge
is strongly localized on the former. Ionized RgnM+ clusters
(where M is a metal atom cation, and Rg is a rare-gas atom)
have recently been investigated both experimentally and theo-

retically. Lüder and co-workers6 determined the mass spectra
of RgnM+ clusters in time-of-flight experiments. In the case of
ArnNa+ clusters, special stabilities atn ) 6, 8, 10, 13, 16, 20,
23, 25, 26, and 29 were found experimentally, at variance with
those obtained for ArnK+ clusters, namely, atn ) 12, 18, and
22.6

These different series of magic numbers were interpreted by
Velagrakis et al.9 in terms of the ratio of the ionic radius versus
the van der Waals radius. In this work, the lowest-energy
structures were determined from explicit LJ potentials, or by
assuming a simple hard-sphere-type construction. Velagrakis
and co-workers gave evidence for five successive regimes for
the building of the first solvation shell, depending on the radii
ratio. Starting with a tetrahedron (n ) 4), the growth proceeds
with an octahedron (n ) 6), a square antiprism (n ) 8), a
pentagonal antiprism (n ) 10), and ends with an hexagonal
antiprism (n ) 12). More recently, Herna´ndez-Rojas and
Wales10 carried out the global optimization of ArnK+ and
XenCs+ clusters up ton ) 79. These authors used potentials
more realistic than the bare LJ term, including the long-range
Mason-Schamps15,16 interaction and its 1/R,4 1/R6, and 1/R12

contributions. Icosahedral packing was seen to be dominant for
XenCs+ clusters, which are characterized by radii ratio of 0.84
and special stabilities atn ) 9, 12, 18, 22, 25, 28, 38, 45, and
48.10 Conversely, ArnK+ clusters exhibit icosahedral packing
only beyondn ) 49, with the smaller clusters showing enhanced
stability atn ) 8, 15, 19, 21, 31, and 36. For larger sizes, both
XenCs+ and ArnK+ clusters show the same icosahedral stable
sizes atn ) 54, 57, 60, 63, 70, and 73. The transition in ArnK+

is due to the dominance of argon-argon constraints, which scale
as the square of the number of solvent rare-gas atoms, whereas
the polarization forces behave linearly at a given distance and
also decrease as the inverse fourth power of the distance away
from the ionized species.

Small ArnNa+ clusters have recently been investigated using
ab initio methods11,12 in the rangen < 10 with the aim at
providing reference results in this small size regime. These
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works also quantified the importance of many-body terms in
the stability and structure of the small clusters. Nagata et al.11

performed MP2 calculations and found structures similar to
those predicted by Velagrakis for a radii ratio of 0.75 andn g
6.9 The disagreement found at smaller sizes (n < 6) was
interpreted by Nagata et al. as the consequence of many-body
forces, particularly the interaction between induced dipoles. Giju
et al.12 also carried out MP2 optimizations with subsequent
CCSD(T) single-point energy calculations in the rangen ) 2-6.
These authors found different results, especially at sizes ofn )
2, 3, 4, and 5 for which at least two different isomers were
found to have nearly the same energy.

In the present article, we investigate the structure of ArnNa+

clusters in the broader rangen e 54 by parametrizing two many-
body models and performing unconstrained global optimization.
Our two models differ in their treatment of the polarization
interactions. The first scheme considers the perturbative interac-
tion between electrostatic dipoles induced by the sodium ion.
In the second model, a partial charge transfer between sodium
and the argon atoms is allowed in the framework of self-
consistent fluctuating charges.17,18 In both models, nonadditive
overlap effects are also taken into account via an Axilrod-
Teller potential between the alkali atom and all pairs of argon
atoms. The parametrization was carried out from ab initio
calculations at the CCSD(T) level on ArNa+ and Ar2Na+ with
appropriate correction of the basis set superposition error
(BSSE).

II. Models

We now briefly describe the models, which both include
pairwise additive terms but differ through the treatment of the
many-body polarization effects. These effects are treated via
an induced-dipole/induced-dipole model in the first case, and
via fluctuating charges in the second case.

A. Pairwise Terms. The potential energyV of the clusters
is described in terms of pair-additive functions complemented
by a many-body contribution,VMB

wherei labels the Na+ ion, andj,k ) 1...n label the argon atoms.
VArAr was taken from Aziz,19 whereasVArNa+ was fitted to the
ab initio CCSD(T) data including BSSEs via the following
expression:

In the above expression,øpol andødispare cutoff functions similar
to those introduced by Aziz:19

The parametersdpol andddisp are the cutoff distances inøpol and
ødisp, respectively.

The many-body interactions stem from different origins, the
most important being electrostatic forces. In the present work,
two alternative schemes have been used to account for these
effects.

B. Induced-Dipole/Induced-Dipole Model.Our first model,
denoted as induced dipole/induced dipole (DD) in the following,
is perturbative and consists of the interaction between the dipoles

on Ar atoms induced by the alkali cation:

with µbj being the dipole induced on thejth argon atom by the
charge located on Na+, assumed to be+1. The valueµbj is
calculated using a distance-damped polarizability to avoid
divergences at small internuclear distances:

Similar to the direct polarization interaction between Na+ and
Ar atoms, ødip-dip is a damping function of the Aziz type,
characterized by the cutoff distanceddip-dip.

C. Fluctuating Charges Model. In our second, alternative
scheme, the additive polarization of the argon atoms by the
sodium ion is complemented by some partial charge transfer,
resulting in a nonperturbative Coulomb-type interaction. The
fluctuating charges (fluc-q, or FQ model) method,17 equivalent
to the charge equilibration scheme,18 provides a convenient way
of estimating the charges{qi} carried by a set of atoms. Fluc-q
potentials have previously been used to model molecules20 or
ions21 in aqueous solvent. Briefly, the potentialVfq is given by

whereεi andHi are the atomic electronegativity and hardness
of elementi ) Na+ or Ar. Jij is the two-center Coulomb integral
between elementsi and j, which depend on the internuclear
distanceR through the empirical expression

At short distances, the Coulomb integral reaches the hardness
Hij. To minimize the number of parameters in the model, the
hardness between unlike elements is determined according to
the simple composition ruleHjk ) (Hj + Hk)/2. In the fluc-q
framework, the charges carried by the atoms are obtained self-
consistently to minimize the Coulomb energy of the system at
the current geometry under the constraint of total charge
conservation. This constraint is expressed through a Lagrange
multiplier, λ, in eq 2. Because of the self-repulsion quadratic
term in Vfq, the fluc-q potential does not vanish for infinitely
distant atoms, nor do the charges. Unfortunately, this intrinsic
behavior of the fluc-q model induces a (small) size-dependent
energy shift due to the electronegativity and hardness terms.
This is why the total energies given in Tables 2 and 3 are
different.

D. Axilrod -Teller Contribution. In addition to the two
previous many-body potentials, an extra three-body term is
added between the alkali atom and all pairs of argon atoms under
the form of an Axilrod-Teller potential.22 This contribution
accounts for three-body overlaps and nonadditive Pauli repulsion
effects:

V ) ∑
j)Ar

VArNa+(Rij) + ∑
j,k)Ar

VArAr(Rjk) + VMB

VArNa+(R) ) aRc exp(-bR) - øpol(R)
C4

R4
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C6

R6
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exp[-(dR - 1)2] if R e d.
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3
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1/2(Rij)

RBij

Rij
3

Vfq ) ∑
i

εiqi + ∑
i

Hi

2
qi

2 + ∑
i<j

Jijqiqj + λ(∑
i

qi - 1), (2)

Jij ) (R3 + 1

Hij
3)-1/3

VAT ) ZAT ∑
j,k)Ar

1 - 3 cos(θijk) cos(θjki) cos(θkij)

Rij
3Rik

3Rjk
3
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with the indexi being kept for the sodium ion. This contribution
turned out to be necessary for reproducing the ab initio
geometries of the smallest clusters.

III. Results and Discussion

A. Ab Initio Inputs and Parametrization. To parametrize
the two models described in the previous section, extensive
CCSD(T) calculations were performed on ArNa+ and Ar2Na+

using the MOLPRO software package.23 The variations in the
ab initio energy of ArNa+ versus internuclear distance are
represented in Figure 1 along with the curves for the two model
potentials (DD and FQ). These calculations were carried out
using standard semilocal core pseudopotentials, considering one
and eight valence electrons outside the core for sodium and
argon atoms, respectively. In addition, a core-polarization

operator was used on sodium. Extensive uncontracted valence
Gaussian-type orbitals basis sets were used, namely, 5s4p3d on
sodium and 7s7p5d4f2g on argon. The BSSE was corrected
using the counterpoise method by subtracting the energy of the
atoms calculated in the total basis for ArNa+. In the case of
Ar2Na+, the BSSE was thus estimated as

where∆B(A) ) EB(A) - EA(A) is the counterpoise increment
energy of fragment A calculated in the larger basis set B. This
correction formula thus includes not only the BSSE corrections
for atoms in the triatomic basis set, but also that of diatomic
fragments in the triatomic basis set. There is no correction for
Na+, which carries no electron. For ArNa+, the results are

TABLE 1: Parameters of the Potentials Used in This Work
a

(Hartree)
b

(a0
-1)

c
(dimensionless)

C4

(Hartree‚a0
-4)

C6

(Hartree‚a0
-6)

dpol

(a0)
ddisp

(a0)
VArNa+ 24.1744 2.64112 2.92040 5.556 55.9701 6.71353 6.88062

RAr

(a0
3)

dpol

(a0)
ddip-dip

(a0)
ZAT

(Hartree‚a0
9)

Vdip-dip + VAT 11.112 4.57 4.65 548.04

εNa - εAr

(Hartree)
HNa

(Hartree)
HAr

(Hartree)
ZAT

(Hartree‚a0
9)

Vfq + VAT 0.5607 0.7588 10.0614 2132.13

TABLE 2: Total Energies (in Hartree) and Symmetry
Groups of ArnNa+ Clusters in the DD Model

size energy
point
group size energy

point
group size energy

point
group

1 -0.00630 D∞h 19 -0.06650 C1 37 -0.11109 C1
2 -0.01241 D∞h 20 -0.06935 C2 38 -0.11365 Cs
3 -0.01822 Cs 21 -0.07129 C1 39 -0.11623 C1
4 -0.02385 C2V 22 -0.07345 Cs 40 -0.11868 C1
5 -0.02930 C4V 23 -0.07612 C1 41 -0.12109 C1
6 -0.03460 Oh 24 -0.07873 C1 42 -0.12421 C2V
7 -0.03799 C3V 25 -0.08140 C1 43 -0.12596 C1
8 -0.04140 D4d 26 -0.08357 C1 44 -0.12865 C1
9 -0.04386 C4V 27 -0.08556 Cs 45 -0.13085 C1

10 -0.04628 D4d 28 -0.08857 C1 46 -0.13309 C1
11 -0.04816 Cs 29 -0.09033 C1 47 -0.13561 C1
12 -0.05032 Cs 30 -0.09281 C1 48 -0.13808 Cs
13 -0.05254 C1 31 -0.09596 C1 49 -0.13893 Cs
14 -0.05453 C2 32 -0.09857 Cs 50 -0.14211 C1
15 -0.05700 Cs 33 -0.10099 C1 51 -0.14518 C3V
16 -0.05988 Cs 34 -0.10300 C1 52 -0.14829 C2V
17 -0.06214 Cs 35 -0.10533 C1 53 -0.15142 C5V
18 -0.06410 C1 36 -0.10840 C1 54 -0.15453 Cs

TABLE 3: Total Energies (in Hartree) and Symmetry
Groups of ArnNa+ Clusters in the FQ Model, Including the
Self-Repulsion Energy (see section II-D)

size energy
point
group size energy

point
group size energy

point
group

1 -0.18942 D∞h 19 -0.27455 C1 37 -0.32601 Cs
2 -0.19757 D∞h 20 -0.27766 C2 38 -0.32865 C1
3 -0.20558 C2V 21 -0.28023 C1 39 -0.33163 C1
4 -0.21367 D4h 22 -0.28294 Cs 40 -0.33441 C2
5 -0.22175 C4V 23 -0.28588 C1 41 -0.33683 C1
6 -0.22991 Oh 24 -0.28887 C1 42 -0.34029 C2V
7 -0.23535 C3V 25 -0.29179 C1 43 -0.34205 C1
8 -0.24091 D4d 26 -0.29458 C1 44 -0.34496 C1
9 -0.24483 C4V 27 -0.29721 Cs 45 -0.34723 C1

10 -0.24858 D4d 28 -0.30019 C1 46 -0.34977 C1
11 -0.25128 Cs 29 -0.30284 C1 47 -0.35236 C1
12 -0.25426 C2 30 -0.30560 C1 48 -0.35486 Cs
13 -0.25714 C1 31 -0.30883 C1 49 -0.35625 C1
14 -0.25999 C2 32 -0.31169 Cs 50 -0.35933 C1
15 -0.26295 Cs 33 -0.31417 C1 51 -0.36183 C3V
16 -0.26620 Cs 34 -0.31712 C1 52 -0.36512 C2V
17 -0.26901 Cs 35 -0.31975 C1 53 -0.36841 C5V
18 -0.27164 C1 36 -0.32292 Cs 54 -0.37172 Ih

Figure 1. Potential energy curves for ArNa+ and Ar2Na+. Upper
panel: ArNa+ potential as a function of the internuclear distance from
CCSD calculations, and in the DD and FQ models. Lower panel: Ar2-
Na+ potential as a function of the bending angle, at fixed Ar-Na+

distances of 5.20a0, from CCSD(T) calculations, and in the DD and
FQ models. The curves for the FQ model have been referenced to the
minimum energy values.

∆BSSE) 2∆Ar2Na+(Ar) + ∆Ar2Na+(Na+) +

2∆Ar2Na+(ArNa+) + ∆Ar2Na+(Ar2)
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extremely close to the highly correlated calculation of Ahmadi
et al.24 who foundDe ) 1300 cm-1 and Re ) 5.19 a0. The
present CCSD(T) calculations yieldDe ) 1402 cm-1 without
BSSE, 1384 cm-1 when the BSSE correction is included, and
the same equilibrium distanceRe ) 5.20 a0 in both cases. In
the case of Ar2 and after BSSE correction, the ab initio data
are in reasonable but not perfect agreement with the experi-
mental values and the empirical adjustments. The BSSE
uncorrected dissociation energies (De ) 102.3 cm-1) and the
corrected value (De ) 82.48 cm-1), both atRe ) 7.20a0, are to
be compared with the Aziz data ofDe ) 99.78 cm-1 andRe )
7.103a0. Despite the rather extensive basis set used here, the
discrepancy between the BSSE-corrected result and the Aziz
value is still significant. The cause for this discrepancy might
be the inadequacy of the BSSE correction using the ghost orbital
method for extensive basis sets. We attempted to follow the
convergence of the calculated dissociation energy of Ar2 with
increasingly large basis sets. However, we were unable to find
any reasonably stable extrapolation scheme. Ab initio data with
experimental accuracy on the argon dimer have been reported
very recently by Patkowski et al.25 With respect to the present
study, these authors used even larger basis sets on atoms further
complemented with midbond functions and a specific extrapola-
tion scheme. However, such a calculation would exceed our
present possibilities for Ar2Na+.

In Ar2Na+, previous authors11,12 have mentioned a strong
competition between a symmetric linear shape (D∞h) and a bent
isomer (C2V). In a simple additive potential picture, the Ar2

intrafragment van der Waals interaction plays a crucial role in
the stabilization of the bent isomer. A one-dimensional repre-
sentation of the potential energy surface of Ar2Na+ as a function
of the ArNaArk bending angle is given in Figure 1 for the two
model potentials as well as for the present CCSD(T) calculations
with BSSE corrections. Here we have fixed the two NaAr
distances atRNaAr ) 5.20a0. The twoD∞h andC2V minima are
quasi degenerate in energy, with the linear isomer being located
only 3 cm-1 below the C2V isomer, for which the optimal
bending angle is about 100°. This value is in agreement with
the results by Nagata et al.11 and by Giju et al.12 The barrier
between the two isomers does not exceed 10 cm-1, and more
extensive calculations are probably needed to ascertain which
is the lowest isomer, and also to obtain a more accurate estimate
of the barrier height. In particular, quantum delocalization is
likely to be important. Harmonic estimates with both models
provide zero-point energies (ZPEs) at 123 and 132 cm-1 with
the DD and FQ models, respectively, above the linear isomer.
These values are far above the potential barrier separating the
two isomers (the ZPE magnitude essentially results from the
antisymmetric and symmetric Ar2Na+ modes, the ZPE of the
ArNa+ diatomic beingωe ≈ 60 cm-1). This should yield a
floppy system with a double minimum vibrational ground
state in the bending coordinate. A dedicated determination of
the anharmonic vibrational ground-state function beyond the
harmonic approximation would be very useful, using, for
instance, discrete variable representation or diffusion Monte
Carlo techniques. This is, however, not the scope of the present
paper.

The relative importance of the three-body interactions in Ar2-
Na+ can be inferred from the magnitude of the known Ar2

interaction. Consistently, using the BSSE-corrected CCSD(T)
diatomic data, the differential importance of the three-body
contribution in the bending term is estimated to have the same
magnitude as the Ar-Ar interaction, that is, around 80 cm-1,
to compensate the decrease in the Ar-Ar fragment dispersion

contribution in Ar2Na+ betweenRArAr ≈ 7.20a0 (C2V) andRArAr

) 10.40a0 (linear).
The parametrization of the DD and FQ models was set to

reproduce the ab initio potentials of Figure 1. The Axilrod-
Teller parameterZAT was fitted independently for each model,
and the values of all parameters are given in Table 1. The
charges were not included as reference data in the fit of the FQ
model. It can be noticed that the diatomic curve nearly coincides
with the ab initio data close to the equilibrium distance, thus
indicating a very small charge transfer. The FQ curve tends to
slightly deviate from the reference curve at large distances
because of the aforementioned drawback of the FQ model
inducing a nonvanishing charge at dissociation. This was
actually found to have little effect on the second and third
solvation shells.

B. Structures and Energetic Stability.The putative global
minima of larger ArnNa+ clusters withn e 54 were located
using the basin-hopping26 or Monte Carlo+minimization
method.27 For each sizen, 10 000 conjugate gradient local
minimizations were performed, and random displacements of
all atoms were attempted with magnitude of 7a0. The temper-
ature in the basin-hopping simulations was set to 100 K.

Figure 2 shows the most stable cluster geometries in the range
n ) 3-10 as well as some remarkable sizes atn ) 16, 20, 28,
31, 37, 42, 48, 50, 52, and 54. We have not found significant
differences between the geometries obtained with the two
models, except in the vicinity ofn ) 50 (see below). The
symmetry groups and total energies of all clusters are listed in
Tables 2 and 3 for the DD and FQ models, respectively.28

The results for clusters in the rangen ) 3-10 can be
compared with the ab initio results of Nagata et al.11 and Giju
et al.12 For each size in the rangen ) 2-4, two quasi degenerate
isomers are found for both DD and FQ models. For Ar2Na+,
the global minimum is linear, whereas the bent isomer is slightly
higher in energy. It must be emphasized here that the stabiliza-
tion of the linear isomer is achieved thanks to the many-body
terms in our models. The global minimum of Ar3Na+ is planar
(D3h symmetry group) in both models, but a second three-
dimensional isomer with pyramidalC3V symmetry exists, also
in both models. For Ar4Na+, a competition takes place between
the planarD4h isomer and theC2V three-dimensional isomer.
While both structures are real minima in the two models, the
three-dimensional structure is the global minimum in the DD
model, with the planar structure being the lowest in the FQ
model.

These results are consistent with those of Giju et al.12 As
already mentioned in previous works, the competition between
compact isomers maximizing the number of nearest argon-
argon neighbors versus lower dimensionality structures is clearly
due to many-body and three-body terms. These isomers do not
differ by the number of ArNa+ bonds, but only via their mutual
orientation, that is, the balance between the loss of Ar-Ar bonds
and the gain in electrostatic many-body energy. In terms of
electrostatics, the energy lowering for structures with dipoles
pointing outward is favored in the DD model. Equivalently, in
the FQ model, the argon atoms gain a small positive charge
and tend to avoid each other to some extent. Additionally, the
Axilrod-Teller three-body interactions, withZAT > 0 in both
models, further favor open structures. The many- and three-
body contributions of the DD and FQ potentials thus stabilize
the linear or planar structures versus more compact shapes. This
effect must of course be scaled against the number of Ar-Ar
interactions, hence it becomes less influential on the structures
for n > 4. In the rangen ) 5-8, all global minima are three-
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dimensional, in agreement with the results of Giju et al.11 and
Nagata et al.12

The second energy difference∆2E(n) ) E(n + 1) + E(n -
1) - 2E(n) between sizen and its immediate neighbors usually
emphasizes the particularly stable sizes with respect to their
immediate neighbors. The variations of∆2E with n are shown
in Figure 3 for the two models. Sizes 6 and 8 are especially
prominent: they correspond to isomers with particularly high

symmetries, maximizing the number of Ar-Na+ and Ar-Ar
interactions at optimal distances in the first solvation shell. Clear
extrema are also seen atn ) 20, 28, 42, 48, and 54. Even though
the magic sizes are generally more pronounced in the FQ model,
very few qualitative differences are found between the DD and
FQ models, except atn ) 52. This size lies near the structural
transition of the first solvation shell, but differs somewhat in
the two models because of some nontrivial cluster size effects
and the large number of quasi degenerate isomers. In the range
n ) 49-52, the lowest isomers with an 8-coordinated first shell
and those with coordination 12 are very close in energy, and
their ordering changes slightly with the model chosen.

The selected clusters in Figure 2 illustrate the two main
growth regimes of ArnNa+ clusters. The completion of the very
stable square antiprism occurs atn ) 8, with all argon atoms
being located at 5.20a0 from the alkali ion. Capping this
structure twice above the squares leads to another stable cluster
atn ) 10, with the two extra atoms at 8a0 from the ion. Above
this size, argon atoms are added in capping positions, but the
filling of external shells is not centered on the ion until about
40 argon atoms are present. The usual polyicosahedral growth
of pure argon clusters29,30 is hindered by the square antiprism
core, and this effect of geometric frustration strongly reduces
the overall ordering of the argon layers. Most of the specially
stable sizes, as inferred from the extrema in the second energy
derivative plot, do not exhibit a strong ordering, and only in
very few cases (n ) 42 and 54) does the global minimum have
a significant symmetry. The low symmetry of most structures
probably results from the presence of many-body and three-
body terms in the models. Interestingly, the global minima
reported by Herna´ndez-Rojas and Wales, obtained from pure
pair potentials, usually exhibit higher symmetry, even for rather
large sizes.10

Once a sufficient number of argon atoms have been added,
the argon-argon constraints stabilize the multilayer icosahedral
structures found in pure rare-gas clusters.30,31 The alkali ion
exerts a lesser influence on the overall shape of the cluster,
especially near the onset of the shell closure atn ) 54. In the
DD model, because of the different equilibrium distances in
Ar2 and ArNa+, the alkali ion is not located in the center of the
icosahedral solvent shell forn g 50. The distortion of the alkali
from the icosahedron center can reach about 1a0. In the FQ
model, the interactions are more isotropic, and theIh symmetry
is conserved. Because of the core structural transition, no extra
shell around the square antiprism is seen. The present results
are consistent with those of Herna´ndez-Rojas and Wales,10 who
found a transition from 8-coordinated to 12-coordinated alkali
ions in similar ArnK+ clusters, also near 50 rare-gas atoms.

C. Energetic Contributions to the Models. The different
energetic contributions to the many-body DD potential are
represented in Figure 4. The completion of the first solvation
shell clearly has an energetic signature, as the Arn-Na+

contribution reaches a saturation value nearn ) 10. This can
be roughly rationalized as being due to the linear increase of
the polarization contributions in the first shell with the number
of argon atoms. The saturation of this direct polarization energy
occurs once this shell is completed, since each term goes as
the inverse fourth power of the Ar-Na+ distance. Up ton =
10, the interaction among argon atoms nearly compensates the
electrostatic interaction between induced dipoles. We also note
that the three-body Axilrod-Teller contribution has a much
smaller magnitude than the other terms. This term turns out to
be important only for stabilizing the open structures of the
smallest clusters.

Figure 2. Lowest-energy isomers of ArnNa+ clusters for selected sizes
n ) 1-10, 16, 20, 28, 31, 42, 48, 49, 50, 52, and 54, obtained with the
DD model. Two nearly degenerate isomers are shown for sizesn )
2-4.

Figure 3. Second energy difference∆2E(n) ) E(n + 1) + E(n - 1)
- 2E(n) versus sizen within the DD and FQ models.
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Focusing now on the FQ model, Figure 5 shows the variations
of the effective charge carried by the alkali ion as a function of
the number of surrounding argon atoms. For comparison, we
have also given the CCSD(T) charges obtained by Giju et al.
calculated up ton ) 8,12 as well as the Hartree-Fock charges
for the same clusters computed here. A complementary calcula-
tion was performed for theD4d structure of Ar18Na+ resulting
from capping the eight triangular facets of the first shell of Ar10-
Na+, which was locally optimized. We stress here that the
charges obtained with the FQ model were not part of the fitting
procedure, but are an independent outcome.

The charge decreases monotonically with the number of argon
atoms, in agreement with the first-principles calculations, for
which the Hartree-Fock and MP2 results also agree with each
other. Charge transfer is rather underestimated in the rangen
) 5-10, but agrees very well at sizen ) 18. The ab initio data
seem to show that charge transfer essentially stops after the
completion of the first solvation shell. The fluc-q model behaves
much more smoothly, mainly because of the long range of the
Coulomb interaction and the ignoring of real chemical bonds.
An important result is that charge transfer is indeed significant
and reaches about 0.2 electrons in the limit of large clusters.

IV. Conclusion

The present work confirms the preference of positively
charged metal atoms in a rare-gas solvent for ion-centered

structures. We have developed two different atomistic potentials,
including pairwise, three-body, and many-body contributions
to study the structure of clusters containing up to several tens
of rare-gas atoms. These potentials were carefully fitted using
dedicated ab initio calculations performed at the CCSD(T) level.
Terms beyond the pair interactions appear to be essential for
stabilizing the linear or planar global minima that are predicted
by ab initio calculations. The two models represent the many-
body polarization effects either from the interaction between
electric dipoles induced by the alkali cation, or from a partial
charge transfer between unlike elements through the fluctuating
charges framework. The putative lowest-energy structures found
by both models show a transition from a square antiprism,
8-coordinated first solvation shell belown = 50 toward a 12-
coordinated icosahedral shell above this size. This transition is
induced by the intra-argon constraints. As long as magic
numbers are actually being governed by geometric structure,
the present investigation agrees well with experimental data,6

except in the size rangen ) 23-29, which was not reproduced
here. An explanation could lie in the very floppy character of
the second shell and the possible finite temperature or entropic
effects. Indeed the influence of temperature on mass spectrom-
etry and magic numbers has previously been observed by Branz
et al. in (C60)n clusters.33

Even though they include contributions beyond the pair terms,
the present models could be exploited to investigate other
dynamical properties, even for large clusters or bulk systems.
In fact, the induced dipoles and Axilrod-Teller potentials
convey the same numerical cost as a pair potential, because
they only involve all pairs of argon atoms. In the case of the
fluc-q potential, significant savings are achieved by treating the
partial charges as independent variables in molecular dynamics
simulations.17

The most stable structures of ArnNa+ clusters will be
influenced by at least two other effects that would require special
examination. First, as seen here forn ) 2, zero-point effects
and quantum vibrational delocalization might be of importance
for the smallest clusters, for which very small frequencies and/
or shallow wells are found. Such effects are known to be crucial
for ions solvated in helium atoms, but could also be responsible
for some structural changes in the present, heavier systems.
Quantum diffusion Monte Carlo simulations would be a
convenient way to proceed in order to take these effects into
account. Even at the simplest harmonic level, ZPEs could delay
the transition of the first solvation shell between the square
antiprism and the icosahedron because the latter is less tightly
bound to the alkali than the former, possibly resulting in lower
vibrational frequencies.

Second, temperature effects could also play a role in favoring
conformations, which are not the lowest in energy. Again,
structures with lower vibrational frequencies will benefit from
a slight increase in temperature. Both quantum delocalization
and temperature effects are included in the inherent structure
picture of the potential energy surfaces, which we previously
applied to neutral CaArn clusters.32

Finally, the stability and structure of mixed charged cluster
ions are also of interest in the context of excited states in the
neutral species.34-36 As an electron of the neutral cluster is
promoted to more and more diffuse excited orbitals, a Rydberg-
type situation may be reached. This would correspond here to
a sodium ion solvated by an argon shell, with an excited electron
orbiting beyond the argon shell. A strong interplay between
cluster size, geometric structure, and excitation level is expected.
Work is currently in progress to address this issue.37

Figure 4. The different energy contributions in the total binding energy
of ArnNa+ clusters in the DD model.

Figure 5. Charge transfer on sodium in ArnNa+ clusters within the
FQ model. The ab initio MP2 results of Giju and co-workers,12 as well
as the present Hartree-Fock data, are represented for specific sizes.
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